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Through informal conversations with dozens of  
structures teachers and practicing structural engineers, 
the authors have concluded that few are aware of the true 
nature ofweb forces in beams. No structures textbook that 
we know of shows a correct understanding of this 
phenomenon. Yet such an understanding is essential if 
we are to teach students to understand beam behavior and 
find good forms for beams. 

DEMONSTRATING WEB FORCES WITH 
PHYSICAL MODELS 

To visualize web forces in beams. the authors have 
developed a new type of demonstration model that is 
made primarily of foam rubber. Foam rubber models of 
beams are nothing neu: most teachers have used them for 
years to demonstrate such phenomena as the triangular 
distribution of bending stresses in the middle of a beam. 
However, up to 110%. any attempt to use them to 
demonstrate web forces (so-called shear stresses) in a 
beam has been defeated by gross crippling of the foam at 
points of application of force and a total lack of visible 
web deformations. 

The models presented here incorporate two innovations 
that circumvent these problems. The first of these 
innovations deals with local crippling. Crippling at points 
of application of concentrated loads is avoided by loading 
the beam by means of loading plates. which are vertical 
pieces of chipboard or mat board that are full) glued on 
both sides to the entire cross-section of the foam beam 
(Figure la) .  

At end reaction points. local crippling is avoided by 
gluing the entire area of the foam to a vertical end plate 
of wood that acts as the support. The pro-iecting bottom 
edge of the end plate is beveled to provide a hinge-like 
bearing condition. Both the loading plates and the end 
plates transfer forces into the foam over the entire cross- 
sectional area of the beam. 

The second innovation consists of full-length. full- 
width cover plates of chipboard or mat board that are 

glued to the top and bottom surfaces of each beam (Figure 
1 b). The material ofthese thin cover plates is much stiffer 
than the foam. Thus the cover plates attract nearly all the 
longitudinal tensile and compressive stresses in the beam. 
The relatively high loads that can now be applied cause 
the foam web to exhibit a strong deformation pattern that 
is vividly observable. 

The fabrication of these models is simple and fast. The 
foam is cut to shape and dimension on a bandsaw. 
Loading plates are inserted and glued wherever one 
wishes to apply loads. To  facilitate the mounting of 
loading handles. the loading plates ma). be glued to 
slotted dowels that pro-ject vertically from the top of the 
beam as illustrated in Figure I b. The loading handles may 
be omitted if desired. and loads applied to the beam 
merely by pressing on the top cover plate directly above 
a loading plate. Loading plates should be exactly the same 
height as the foam, or just a bit less. In assembling a 
beam. all the vertical joints are glued first. The end plates 
and loading plates are generously coated with ordinary 
yellow. water-based woodworkers glue, and clamped 
gently together with the blocks of rubber foam to dry 
overnight. The next day, the cover plates are added. using 
the same glue and clamping gently. If the loading plates 
include pro-jecting dowels, the top cover plate must be 
drilled to accommodate them. Finally. crossbars of larger- 
diameter dowel are drilled and glued to the vertical 
dowels to act as handles at the loading points. 

To make web deformations visible. both a grid of 
straight lines and a coordinated array of small circles are 
applied to one side of the beam. The straight lines are 
ruled with a nylon-tip pen. The circles are most easily 
made by imprinting with the open end of a 35mm film 
canister or other hollow. cylindrical object that has been 
inked on a stamp pad. When the foam deforms. each 
circle becomes an ellipse. The major and minor axes of 
each ellipse are easily discerned. The major axis indicates 
the direction of principal (maximum) tension at that 
location in the beam, and the minor axis the direction of 
principle compression. It is often possible to lay the beam 
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Fig. 1 .  Creating a model beam to demonstrate \\eb forces 
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model on its face on the glass plate of a photocop) 
machine. apply the desired loading pattern, and photocop) 
the resulting pattern of elhpses. One ma) then plot 
principal stresses and stress trajectories on the photocop). 

DEMONSTRATIONS O F  WEB FORCE 
PATTERNS IN A PRISMATIC BEAM 

It is usual to begin the analysis of a beam by plotting a 
graph of the sum of all the vertical external forces that lie 
to the left of each point along the span. This sum of forces 
is usually called "shear force" Its graph is generally 
called asshear diagram" and is labeled with the letter"V" 
to indicate that it relates to the sum of vertical forces. The 
letter "V" and its associated meaning are accurate. The 
term "shear diagram" is not. because the vertical external 
forces do not produce shearing effects a beam. For this 
reason. we will call such diagrams "V diagrams." The 
integral of the  V diagram is commonly called the bending 
moment diagram (M),  an accurate term that we will use 
here. Web forces in a beam with concentrated loads are 
demonstrated by the prismatic beam shown in Figure 2. 

Fig. 2. Demonstration of neb forces in a prismatic beam that 
supports a single. concentrated load at midspan. 

(By "Aprismatic." we mean a beam whose cross-section 
is constant in shape and size along its full length). The 
three loading plates in this model allow its use to 
demonstrate the effects on web forces of several different 
loading conditions. The first of  these is a single, 
concentrated load at the center of the span (Figure 2). 
This loading creates equal absolute values of V-force 
throughout the length of the beam, positive to one side of 
the centerline and negative to the other. This is reflected 
clearl> and unequivocall) in the identical deformations 
of all the circles on the face of the beam and t h e ~ r  mirror- 
image disposit~on about the vertical centerline of the 
beam. Because of the vastl) greater stiffness of the cover 
plates relative to that of the foam web. the lines of 
principal tension and compression in the foam web follow 

the pattern of those in a similarly loaded steel wide-flange 
beam: they lie along 45 degree lines practically throughout 
the height of the web. 

The clearest way to understand and teach the internal 
behavior of any structural body is through recognition of 
its directions ofprincipal tensile and compressive stresses. 
The deformations in the foam model in Figure 2 indicate 
that the principal tensile and compressive stresses in the 
web of the beam are diagonal. While it is true that a 
demonstration model ofthis beam could also be constructed 
of a stack of pliable strips that slide horizontally with 
respect to one another when the stack is flexed. this 
sliding action does not indicate the presence of shear in 
an actual beam. Rather. the sliding of  the layers of the 
stack is caused by a lack of diagonal tensile and 
compressive links to resist the horizontal components of 
the diagonal tensions and compressions that the model in 
Figure 2 demonstrates. Teaching that web forces in a 
beam constitute shear is akin to teaching that the axial 
forces in a compression strut constitute shear. The 
presence of shear in the strut can be "proven" by cutting 
diagonal slices through the strut. applying an axial force, 
and observing the sliding of the slices. Yet the strut acts 
in pure compression, not in shear. 

A beam with a single load concentrated at one of the 
quarter points experiences two different intensities of V- 
force. higher in the shorter portion of the beam and lower 
in the longer portion. This difference in intensity is 
indicated in the foam beam model by the difference in the 
diagonal deformations of the circles in these two areas of 
the beam (Figure 3). 

Fig. 3. Demonstrating neb forces in a prismatic beam loaded at a 
quarter point. 
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Fig. 4. \;eb forces in a prismatic beam loaded at inidspan and one 
quarter point. 

If this model is loaded simultaneouslq kvith forces 
concentrated at the center and at one ofthe quarter points. 
the three different intensities of V-force in the beam are 
easily observed (Figure 4). 

When this same model is loaded with identical loads at 
the two quarter points and no load in the center. the V- 
forces in the two end quarters are identical. There is no V- 
force in the middle half of the beam. a condition that is 
reflected by a total absence of diagonal deformation of the 
circles in this region (Figure 5). 

Fip. 5 .  When loaded onl! at the quarter points. a prismatic beam 
slio\\ s no M eb forces bet\\ sen the tn o loads. 

FORCE P A T T E R N S  IN FUNICULARLY-SHAPED 
BEAMS 

A second model (Figure 6) is configured so that the 
depth of the center half of the beam is everywhere 
proportional to the bending moment for a single. 
concentrated load at midspan. 

Thus the profile of this region of the beam resembles 
the shape o f  i ts  bend ing  moment  d iag ram.  Not  

Fig. 6. .4ppl>ing a single. concentrated load at midspan to a beam 
\\hose prolile in the center t n o  quarters resembles its bending 
mo~nent diagram 

coincidentally. it also resembles a shape that is funicular 
for a single load at midspan. which is a shape that a rope 
or cable would take in supporting such a load. The end 
regions of this model beam are rectangular in profile. 

When it is loaded only at midspan, the center half of 
this beam. which is funicularly shaped for this loading, 
shows no diagonal deformations of its circles. which 
indicates a total absence o f  diagonal tensile and 
compressive forces. Why are there no diagonal forces? 

To answer this question. we must understand how 
forces flow inside a beam and why. When any beam is 
subjected to a single. concentrated load at midspan, the 
magnitudes of the applied bending moments are  
represented by a triangular moment diagram. The bending 
moment is zero over the supports. and rises linearly to a 
maximum value at midspan. 

Although the applied bending moments vary. the amount 
and configuration of material at any vertical section of a 
prismatic beam (one of constant cross-section) are the 
same throughout the span. This results in a variation in 
the intensity of longitudinal internal forces along the 
length of the beam: They are low in the end regions of the 
beam. where bending moments are low. and highest at 
midspan. the point of maximum moment. 

At an). vertical section. we can represent the total 
horizontal component of tensile or compressive force 
with a single force vector whose line of  action passes 
through the centroid of the stress block. as shown in the 
right half of the beam. Because the moment arm between 
these pairs of force vectors is constant throughout the 
beam. the magnitude of the total force vectors varies 
proportionatel) to the applied bending moment. ranging 
from zero at the supports to a maximum value at midspan. 

This variation in total longitudinal forces necessarily 
creates the familiar lattice pattern of principal stresses 
within a prismatic beam. At midspan, all the principal 
forces flow horizontally. At a vertical section a short 
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distance from midspan, however, the total horizontal 
force must be less than at  midspan. This difference in 
total force can exist only in a flou pattern of forces in 
which. as the longitudinal forces move from the center of 
the span toward either support. successive portions of the 
total tensile or compressive force veer away from a 
horizontal orientation. cross the neutral axis of the beam 
at an angle of45". and terminate at the opposite face ofthe 
beam. which theq meet at right angles. As each portion of 
the total compressive force veers off and follows this 
curving path. it gradually dissipates b), expending energy 
to deflect its mirror-image portion of total tensile force. 
The mutually interacting pairs of forces always intersect 
at right angles. At the neutral axis. both sets of forces are 
already much reduced in magnitude. but their magnitudes 
are identical. and the), act upon one another at angles of 
450 to the horizontal. Each pair offorces dwindles to zero 
magnitude as its tensile and compressive flows reach the 
opposite faces ofthe beam from which they began. having 
exhausted themselves completely in deflecting one 
another. To repeat. it is through this mutual dissipation 
of  decrements of total force that veer away from a 
horizontal direction and intersect with one another. that 
the total horizontal component of force in a beam varies. 
as it must, along the length of a beam whose depth does 
not vary in proportion to its bending moment. 

If the depth of a beam varies so that it is proportional 
to the bending moment at any point in the span. the 
moment arm between the opposing total forces of tension 
and compression also varies proportionally with the 
bending moment. This allows the horizontal components 
of  total forces within the beam to remain constant 
throughout the span. This being the case. no portions of 
the horizontal tensile or compressive forces need to veer 
away toward the opposite edge of the  beam. The principal 
stresses inside such a beam follow parallel or gently 
radiating lines that never cross one another. In the 
absence ofcrossing directions offorce. there is no diagonal 
tension or compression in the web of the beam, and no 
diagonal deformations are seen in the foam beam model. 
We observed this condition in both Figure 5 and Figure 6. 
Notice in both these figures. however. the diagonal 
deformations ofthe circles on the prismatic outer quarters 
of the beam. where the beam profile does not match the 
shape of the moment diagram. 

There is another important lesson in Figure 6. The 
center two quarters ofthe beam are subjected to the same 
V forces as the outer quarters, yet only the outer quarters 
show diagonal deformations. This indicates clearly that 
diagonal tensions and conipressions in a bean1 do not 
necessarily relate directly to the V diagram. Instead. the) 
are caused by a mismatch between the profile o f the  beam 
and the moment diagram. As another example of  this. the 
prismatic beam shown in Figure 5 is subjected to 
concentrated loads at its quarter points only, a condition 
that results in a constant bending moment through the 

middle half of the beam. Because the constant moment in 
this region is everywhere proportional to the constant 
depth of the beam, no diagonal web deformations occur. 
In the two end regions. the moment varies but the depth 
of the beam does not. and diagonal web deformations 
confirm the presence ofcrossing lines ofprincipal stresses 
in the web. 

The central half of the model that is shown in Figure 6 
is shaped so that its depth is proportional to the bending 
moment values for a single, concentrated load at  midspan. 
When it is loaded only at the center. its central region 
shows no diagonal deforniations. When it is subjected to 
any loading condition other than this. the depth of its 
center region is no longer proportional to bending moment. 
and diagonal tension and compression can be seen to 
occur throughout the beam. 

As a further illustration of this phenomenon. the beam 
model shown in Figure 7 is prismatic for half its span. and 
has a parabolic profile in the other half. 

Fig  7. A unifonnlb-distributed load induces \veb deformations in 
its prismatic half. but not in the half \\hose profile matches the 
bending moment diagram for this load. 

When this beam is loaded with identical forces at eight 
points distributed evenly along its entire span. a loading 
condition that approaches a uniform loading. diagonal 
web deformations are visible in the prismatic half but not 
in the parabolic half. These deformations are highest at 
the right support. where V forces are at a maximum, and 
diminish to zero at midspan. The parabolic half of this 
beam. which shows no web deformations under a uniform 
loading. acts in much the same manner as a tied arch. 

When an) loading pattern other than a uniform one is 
applied to this beam. the parabolic portion exhibits 
diagonal u e b  deformations. as can be seen in the region 
near the center of the beam in Figure 8. 

It is useful in many real-world situations to shape 
beams so that their depth varies proportionally to the 
magnitude of the bending moments to which theq will be 
subjected. This results in an absence of diagonal tension 
and compression in the web and the fullest possible 
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loading patterns for which a beam is not shaped will create 
diagonal web stresses despite the purposeful shaping. 
This suggests that it is wise to design a funicularly-shaped 
beam to resist diagonal web stresses for the full range of 
loading patterns that it m i l l  be exposed to in actual service. 
bvhich sometimes requires making compromises in its shape. 

Fig. 8. The parabolic halfofthe beam e~perienci.s\veb deformations 
\\hen a nonunifom loading is applied. 

stressing of the top and bottom regions of the beam 
throughout the span. This is a more efficient utilization 
of the material than that of most beams. A side benefit is 
that the beam takes a shape that is both elegant and 
expressive of its internal flow of forces. Such funicularly- 
shaped beams are often seen in 19th century works of 
engineering, but have become less common in an economy 
where structural materials are cheap relative to labor. 

Funicular shaping is most appropriate for beams whose 
loading pattern is unlikely to change significantly. because 

S U M M A R Y  

Web forces in prismatic beams are made up of  diagonal 
tension and compression. To  characterize these forces as 
'.shear" is misleading. Web forces in beams are not 
governed by V-force ("shear") values. but  by the 
relationship between beam depth and bending moment 
values. They occur because of the variations in total 
horizontal force that occur along the length of the  member. 
Ifthe height ofthe beam is everywhere proportional to the 
bending moment for its loading. no diagonal web forces 
will occur anywhere in the beam. This suggests that for 
greater efficiencj. and elegance of expression. b e a m  may 
be shaped to resemble their bending moment diagrams. 

All these phenomena may be readily modeled and 
observed with miniature beams that combine foam webs 
with cardboard cover plates. To  avoid local crippling. 
such models are loaded through vertical loading plates. 
and their ends are glued over their entire vertical areas to 
end plates that furnish the reactions. 


